欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

生物医学文本挖掘:国家最先进的开放式问题和未来的挑战

Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges

作者:Andreas Holzinger;Johannes Schantl;Miriam Schroettner;Christin Seifert;Karin Verspoor 加工时间:2015-08-05 信息来源:科技报告(Other) 索取原文[30 页]
关键词:文本挖掘;自然语言处理;非结构化信息;生物医学
摘 要:Text is a very important type of data within the biomedical domain. For example, patient records contain large amounts of text which has been entered in a non-standardized format, consequently posing a lot of challenges to processing of such data. For the clinical doctor the written text in the medical findings is still the basis for decision making -neither images nor multimedia data. However, the steadily increasing volumes of unstructured information need machine learning approaches for data mining, i.e. text mining. This paper provides a short, concise overview of some selected text mining methods, focusing on statistical methods, i.e. Latent Semantic Analysis, Probabilistic Latent Semantic Analysis, Latent Dirichlet Allocation, Hierarchical Latent Dirichlet Allocation, Principal Component Analysis, and Support Vector Machines, along with some examples from the biomedical domain. Finally, we provide some open problems and future challenges, particularly from the clinical domain, that we expect to stimulate future research.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服