欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

人类驾驶行为的数据驱动概率建模与验证

Data-Driven Probabilistic Modeling and Verification of Human Driver Behavior
作者:D. Sadigh;K. Driggs-Campbell;A. Puggelli;W. Li;V. Shia;R. Bajcsy;A. L. Sangiovanni-Vincentelli;S. S. Sastry;S. A. Seshia 作者单位:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. Berkeley, CA 加工时间:2014-03-17 信息来源:EECS 索取原文[7 页]
关键词:驾驶员模型;驾驶行为;随机模型;复杂操作模型;形式化验证
摘 要:We address the problem of formally verifying quantitative properties of driver models. We first propose a novel stochastic model of the driver behavior based on Convex Markov Chains, i.e., Markov chains in which the transition probabilities are only known to lie in convex uncertainty sets. This formalism captures the intrinsic uncertainty in estimating transition probabilities starting from experimentally-collected data. We then formally verify properties of the model expressed in probabilistic computation tree logic (PCTL). Results show that our approach can correctly predict quantitative information about driver behavior depending on his/her state, e.g., whether he or she is attentive or distracted.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服