关键词:钢铁;固体氧化物燃料电池;涂料;合金;陶瓷涂层
摘 要:The high operating temperature of solid oxide fuel cells (SOFCs) provides good fuel flexibility which expands potential applications, but also creates materials challenges. One such challenge is the interconnect material, which was the focus of this project. In particular, the objective of the project was to understand the interaction between the interconnect alloy and ceramic coatings which are needed to minimize chromium volatilization and the associated chromium poisoning of the SOFC cathode. This project focused on coatings based on manganese cobalt oxide spinel phases (Mn,Co)3O4, which have been shown to be effective as coatings for ferritic stainless steel alloys. Analysis of diffusion couples was used to develop a model to describe the interaction between (Mn,Co)3O4 and Cr2O3 in which a two-layer reaction zone is formed. Both layers form the spinel structure, but the concentration gradients at the interface appear like a two-phase boundary suggesting that a miscibility gap is present in the spinel solid solution. A high-chromium spinel layer forms in contact with Cr2O3 and grows by diffusion of manganese and cobalt from the coating material to the Cr2O3. The effect of coating composition, including the addition of dopants, was evaluated and indicated that the reaction rate could be decreased with additions of iron, titanium, nickel and copper.