关键词:支持向量机;KNN;双投票;实体关系抽取
摘 要:实体关系抽取是信息抽取领域的重要研究课题之一。传统的实体关系抽取研究注重于从实体对出现的上下文中提取词法和语义等特征,然后利用分类器(如SVM)进行实体关系抽取,但该类方法忽略了分类器对实体抽取性能的影响。针对SVM分类器对超平面附近样本分类正确率低的问题,本文设计了一种基于双投票机制的SVM模糊样本选择方法。在此基础上,对确定区域样本直接使用SVM分类器进行分类,并利用KNN算法对模糊区域样本进行二次分类。在SemEval-2010评测任务提供的实体关系抽取数据上进行实验,实验结果表明该方法能较大提高实体关系抽取的性能。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取