关键词:近红外光谱;回归分析预测法;木材;生物腐朽;判别
摘 要:利用近红外光谱结合多变量回归分析中常用的主成分回归(PCR)和偏最小二乘法回归(PLSR)分析预测法来判别木材的生物腐朽,并与前期采用的SIMCA和PLS-DA 2种判别方法进行对比分析.结果表明:1)应用近红外光谱结合多变量回归分析方法对校正集样本建立的判别模型,其校正及验证结果与标准值的相关性很高,相关系数均大于0.95,SEC和SEP都很低(0.07 ~0.20),利用模型对未参与建模的样本进行检测,发现2个模型对未腐朽、白腐和褐腐3种类型样本的判别准确率均为100%(偏差都小于0.27);2)对于相同样本集的判别效果,PLSR法比PCR法的判别效果好,且二者都比采用SIMCA法的效果好,并都与PLS-DA法的判别结果相近,说明利用近红外光谱结合回归分析预测法能有效地检测木材的生物腐朽,并对生物腐朽的类型进行准确判别.