关键词:图像处理;Demons算法;掌纹;非刚性;图像配准;归一化
摘 要:非接触采集是主流掌纹采集方式,但其低约束性可能会导致手掌摆放方式不定,与传感器距离不定,从而引起手掌变形,尤其是手掌平面和传感器平面不平行导致的局部变形问题,这将影响后续特征提取,降低识别率.针对此问题,考虑到人手本身是非刚体的特点,提出基于Demons非刚性配准算法的变形掌纹归一化校正模型,进一步增强变形图像与标准图像的相似性,弥补了传统刚性方法校正效果不佳的缺陷.首先使用改进的Demons非刚性配准算法进行变形掌纹的归一化校正,再使用测度指标进行效果评价,结果表明:在任取的图像序列内,与传统的基于归一化互信息(NMI)的刚性配准方法相比,NMI最高提升3.64%,相关系数(COEF)最高提升156.25%,均方误差(MSE)最高降低81.63%,各指标均优于基于NMI的刚性配准方法,验证了本文方法的有效性和优越性,为后续的特征提取和识别创造了有利条件.