关键词:生物医学信号;神经监测;生物医学;时间序列
摘 要:Biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with Hilbert-Huang Transform provides a fully adaptive and data-driven technique to extract Intrinsic Mode Functions (IMFs). The latter represent a complete set of locally orthogonal basis functions to represent non-linear and non-stationary time series. Large scale biomedical time series necessitate an online analysis which is presented in this contribution. It shortly reviews the technique of EMD and related algorithms, discusses the newly proposed SEMD algorithm and presents some applications to biomedical time series recorded during neuromonitoring.