欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

滑动EMD的脑状态数据分析与建模

Sliding Empirical Mode Decomposition-Brain Status Data Analysis and Modeling
作者:A. ZeilerR. FaltermeierA.M. TomeI.R. KeckC. PuntonetA. BrawanskiE.W. Lang 加工时间:2014-08-06 信息来源:科技报告(Other) 索取原文[39 页]
关键词:生物医学信号;神经监测;生物医学;时间序列
摘 要:Biomedical signals are in general non-linear and non-stationary. Empirical Mode Decomposition in conjunction with Hilbert-Huang Transform provides a fully adaptive and data-driven technique to extract Intrinsic Mode Functions (IMFs). The latter represent a complete set of locally orthogonal basis functions to represent non-linear and non-stationary time series. Large scale biomedical time series necessitate an online analysis which is presented in this contribution. It shortly reviews the technique of EMD and related algorithms, discusses the newly proposed SEMD algorithm and presents some applications to biomedical time series recorded during neuromonitoring.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服