关键词:水平集;多尺度分割;灰度不均匀;脑部MR图像
摘 要:针对MR图像中海马区存在灰度不均匀性,基于区域动态轮廓的C-V模型只利用区域信息无法获得准确的海马区分割问题,结合多尺度边缘约束的演化思想和图像区域的全局信息,提出了一种结合边缘和区域信息的多尺度水平集MR(magnetic resonance)图像海马区分割方法.首先,在C-V模型的基础上采用内部约束能量项,消除水平集的重初始化,提高分割速度;其次,改进水平集函数中外部能量项的图像区域全局信息,解决由于灰度不均匀所引起的分割不准确问题;最后,在水平集函数的外部能量项中加入基于多尺度图像边缘的梯度信息,作为边缘约束停止项,使分割效果达到优化.实验结果表明,该算法对存在灰度不均匀性的图像海马区分割速度快、准确率高.