欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于词语距离的网络图词义消歧
作者:杨陟卓;黄河燕 作者单位:北京市海量语言信息处理与云计算应用工程技术研究中心(北京理工大学),北京100081;北京理工大学计算机学院,北京100081 加工时间:2014-07-15 信息来源:《软件学报》
关键词:词语距离;马尔可夫链;网络图模型;PageRank;参数估计
摘 要:传统的基于知识库的词义消歧方法,以一定窗口大小下的词语作为背景,对歧义词词义进行推断.该窗口大小下的所有词语无论距离远近,都对歧义词的词义具有相同的影响,使词义消歧效果不佳.针对此问题,提出了一种基于词语距离的网络图词义消歧模型.该模型在传统的网络图词义消歧模型的基础上,充分考虑了词语距离对消歧效果的影响.通过模型重构、优化改进、参数估计以及评测比较,论证了该模型的特点:距离歧义词较近的词语,会对其词义有较强的推荐作用;而距离较远的词,会对其词义有较弱的推荐作用.实验结果表明,该模型可以有效提高中文词义消歧性能,与SemEval-2007:task#5最好的成绩相比,该方法在MacroAve(macro-average accuracy)上提高了3.1%.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服