欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

大规模对象检测与识别的简约学习法

Learning with Parsimony for Large Scale Object Detection and Discovery

作者:Hyun Oh Song 作者单位:EECS Department, University of California, Berkeley 加工时间:2015-04-08 信息来源:EECS 索取原文[62 页]
关键词:对象检测;对象识别;机器学习;简约法
摘 要:In this thesis, I present two instantiations of model parsimony for large scale object detection and discovery. For model inference, I present sparselet models which significantly reduce model inference complexity by utilizing a shared representation, reconstruction sparsity, and parallelism to enable real-time multiclass object detection with deformable part models at 5Hz with almost no decrease in task performance. For model learning, I present a framework for training object detectors using only one-bit image level annotations of object presence without any instance level annotations (i.e. bounding boxes).
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服