欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于Shearlet域方向模极大值和改进蜂群的图像边缘检测
作者:吴一全;李立;王凯 作者单位:南京航空航天大学电子信息工程学院;高速铁路线路工程教育部重点实验室;深圳市城市轨道交通重点实验室 加工时间:2015-08-31 信息来源:铁道学报 索取原文[8 页]
关键词:图像处理;边缘检测;非下采样Shearlet变换;改进的蜂群算法;方向模极大值
摘 要:

为从图像中提取出更为准确、清晰的边缘,本文提出一种基于Shearlet域方向模极大值和改进蜂群的边缘检测方法。对图像进行非下采样Shearlet分解;对于低频分量,利用改进的蜂群算法准确检测出边缘的基本轮廓线;而对于高频分量,采用方向模极大值算法检测出图像中丰富的边缘细节;融合后得到轮廓完整、细节丰富的图像边缘。实验结果表明:与Canny方法、改进的蚁群方法、改进的蜂群方法、改进的非下采样Contourlet模极大值方法相比,本文提出的方法检测出的图像边缘定位准确、完整清晰、细节丰富,边缘检测效果更好,且运行时间较少。


© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服