欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

文本摘要的凸方法

Convex Approaches to Text Summarization

作者:Brian Christopher Gawalt 作者单位:University of California, Berkeley 加工时间:2013-12-18 信息来源:EECS 索取原文[112 页]
关键词:文本摘要;文本文档;机器学习
摘 要:This dissertation presents techniques for the summarization and exploration of text documents. Many approaches taken towards analysis of news media can be analogized to well-de ned, well-studied problems from statistical machine learning. The problem of feature selection, for classi cation and dimensionality reduction tasks, is formulated to help assist with these media analysis tasks. Taking advantage of `1 regularization, convex programs can be used to eciently solve these feature selection problems eciently. There is a demon-strated potential to conduct media analysis at a scale commensurate with the growing volume of data available to news consumers.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服