欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

电子光学跟踪系统的液压系统中粘性流动的数值模拟研究

Numerical Study of Viscous Flow in the Hydraulic System of Electro Optical Tracking System

作者:R. K. Dey;H. S. Panda;A. K. Biswas;B. K. Das 加工时间:2015-08-29 信息来源:科技报告(Other) 索取原文[23 页]
关键词:粘性流动;p因素;TDMA;EOT
摘 要:In this chapter, we present a study of numerical simulation of centerline velocity, velocity contour and wall shear stress for a two dimensional viscous and incompressible fluid flow in rectangular pipe. The numerical results have been corroborated through a scaling law and asymptotic analysis. It deals with simulation of viscous flow in a typical hydraulic control system can be used in Electro Optical Tracking System (EOTS). Due to geometric constraint, the typical piping can be used in hydraulic circuit of EOTS is of rectangular (with aspect ratio p factor = 1) cross section. The two dimensional governing equation of laminar flow of highly viscous fluid is solved in the present work by using finite difference method. Through extensive simulation, the grid independence of centerline velocity and wall shear stress has been established in the present study. In addition a scale analysis approach and asymptotic analysis of the problem have been carried out. The axial velocity profile in 3D space and corresponding contour has been computed here. It has been demonstrated that the velocity contour is parabolic in nature. The present work also establishes the fact that the velocity profile remains parabolic for rectangular pipe with varying cross sectional aspect ratio (p factor). At different p factor, the centerline velocity and wall shear stress have also been presented in this chapter.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服