欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

用于风险有限的可再生能源定价的概率统计系统稳健策略合成
作者:Alberto Alessandro Angelo Puggelli;Alberto L. Sangiovanni-Vincentelli;Sanjit A. Seshia 作者单位:EECS Department, University of California, Berkeley 加工时间:2015-06-06 信息来源:EECS 索取原文[27 页]
关键词:可再生能源;概率统计系统;策略合成;风险有限
摘 要:We address the problem of synthesizing optimal energy pricing strategies, while quantitatively constraining the risk due to uncertainty for the network operator and guaranteeing quality-of-service for the users. We use Ellipsoidal Markov Decision Processes (EMDP) to model the decision-making scenario. These models are trained with measured data and allow to quantitatively capture the uncertainty in the prediction of energy generation. We then cast the constrained optimization problem as the strategy synthesis problem for EMDPs, with the goal to maximize the total expected reward constrained to properties expressed using the Probabilistic Computation Tree Logic (PCTL), and propose a novel sound and complete synthesis algorithm. An experimental comparison shows the effectiveness of our method with respect to previous approaches presented in the literature.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服