欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

融合关系与内容分析的社会标签推荐
作者:高克宁;张斌;张引;郭朋伟;孙达明 作者单位:东北大学计算中心,辽宁沈阳 110004;东北大学信息科学与工程学院,辽宁沈阳 110004 加工时间:2014-07-15 信息来源:《软件学报》
关键词:Web2.0;社会标签;标签推荐;融合方法;LDA(latentDirichletallocation)
摘 要:标签是Web 2.0时代信息分类与索引的重要方式.为解决标签系统所面临的不一致性、冗余性以及完备性等问题,标签推荐通过提供备选标签的方法来提高标签的质量.为了进一步提升标签推荐的质量,提出了一种基于标签系统中对象间关系与资源内容融合分析的标签推荐方法,给出了基于LDA(latent Dirichlet allocation)的融合表示对象间关系与资源内容的标签系统生成模型TSM/Forc,提出了一种基于概率的标签推荐方法,并给出了基于吉布斯(Gibbs)抽样的参数估计方法.实验结果表明,该方法可以提供比当前主流与最新方法更加准确的推荐结果.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服