关键词:工程计算;稀疏矩阵;向量乘法;多核处理器;数据结构
摘 要:Sparse matrix-vector multiplication (SpMV) is an important kernel in scientific and engineering computing. Straightforward parallel implementations of SpMV often perform poorly, and with the increasing variety of architectural features in multicore processors, it is getting more difficult to determine the sparse matrix data structure and corresponding SpMV implementation that optimize performance. In this paper we present pOSKI, an autotuning system for SpMV that automatically searches over a large set of possible data structures and implementations to optimize SpMV performance on multicore platforms. pOSKI explores a design space that depends on both the nonzero pattern of the sparse matrix, typically not known until run-time, and the architecture, which is explored off-line as much as possible, in order to reduce tuning time. We demonstrate significant performance improvements compared to previous serial and parallel implementations, and compare performance to upper bounds based on architectural models.