关键词:油管;支持向量机;内外表面缺陷;粒子群优化;漏磁信号
摘 要:由于根据漏磁信号难以准确识别出油管内、外表面缺陷,为此提出了基于支持向量机(SVM)的油管内外表面缺陷识别方法。采用时频分析技术提取了用于区分油管内外表面缺陷的漏磁信号时域和频域特征量,然后将其作为油管内外表面缺陷识别SVM模型的样本数据,采用改进的云自适应粒子群(MACPSO)优化算法对SVM识别模型的参数进行优选,结合优选的模型参数和样本数据训练构建油管内外表面缺陷识别SVM模型。实验结果表明:该智能识别方法能够有效区分油管的内外表面缺陷,识别准确率高于90%。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取