基于RFME模型和AdaBoost分类器的电子商务客户关系研究
关键词:RFM;AdaBoost;电子商务;客户价值
摘 要:为进一步探究和分析电子商务客户关系,本文提出e价值的指标体系和计算方法,同时基于使用k-means方法对客户进行分类,实现对客户关系的深层发掘。基于改进的RFM模型实现了对客户的辨别与分类功能,对不同客户的e价值能进行有效预测,同时可以为企业在电商相关领域营销策略的差异化实施提供依据。对客户关系进行深层细分。同时基于Ada Boost分类器,提出以C5.0决策树作为基分类器的客户保持与流失预测模型,降低错误预测成本,精准识别高价值客户。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取