含噪背景下基于盲源分离与NSVDD的断路器机械故障诊断方法
关键词:断路器;;机械故障诊断;;噪声;;盲源分离;;联合特征向量;;NSVDD
摘 要:利用分合闸声音信号实现断路器机械故障诊断易受背景噪声影响,而用于声音信号分离的盲源分离算法存在着分离结果无序性的问题,为此,提出了声音信号盲源分离与含负样本支持向量描述(support vector data description with negative samples, NSVDD)相结合的断路器机械故障诊断方法。首先,运用基于负熵最大化的快速独立分量分析(fast independent component analysis, Fast ICA)实现断路器合闸期间各声源信号的盲分离;然后依据人耳听觉特性提取各分离信号的伽马滤波器倒谱系数(Gammatone frequency cepstrum coefficient, GFCC),同时对各分离信号进行变分模态分解(variational mode decomposition,VMD)得到各有限带宽固有模态分量(band-limitedintrinsic mode functions, BLIMF),以提取声源信号的奇异谱熵、能量熵、峭度熵,并与降维后的GFCC系数组成声音信号联合特征向量;最后,利用单值分类算法NSVDD对联合特征向量进行识别,以消除噪声影响。实验结果表明,基于盲源分离与NSVDD的断路器机械故障诊断方法能够准确完成在含噪背景下的断路器机械故障诊断。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取