欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

分布式计算中的低复杂度的消息传递算法

Low-Complexity Message-Passing Algorithms for Distributed Computation

作者:Nima Noorshams 作者单位:University of California at Berkeley 加工时间:2013-11-22 信息来源:EECS 索取原文[141 页]
关键词:低复杂度;算法;分布式计算;消息传递
摘 要:Central to many statistical inference problems is the computation of some quantities defined over variables that can be fruitfully modeled in terms of graphs. Examples of such quantities include marginal distributions over graphical models and empirical average of observations over sensor networks. For practical purposes, distributed message-passing algorithms are well suited to deal with such problems. In particular, the computation is broken down into pieces and distributed among different nodes. Following some local computations, the intermediate results are shared among neighboring nodes via the so called messages. The process is repeated until the desired quantity is obtained. These distributed inference algorithms have two primary aspects: statistical properties, in which characterize how mathematically sound an algorithm is, and computational complexity that describes the efficiency of a particular algorithm. In this thesis, we propose low-complexity (efficient), message-passing algorithms as alternatives to some well known inference problems while providing rigorous mathematical analysis of their performances. These problems include the computation of the marginal distribution via belief propagation for discrete as well as continuous random variables, and the computation of the average of distributed observations in a noisy sensor network via gossip-type algorithms.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服