关键词:故障诊断;特征提取;稀疏编码;K-SVD;字典学习
摘 要:提出了一种使用稀疏编码对机械频谱信号自学习并识别故障的方法。首先分别对每类频谱信号进行字典学习得到每类信号的字典,然后依次计算测试样本在各个类别的字典上的稀疏重构系数,利用稀疏重构系数与对应类别的字典重构测试样本。最后将重构残差作为识别依据,对机器状态进行判断。通过将振动信号从时域转化到频域,将复杂的移不变稀疏编码问题转化为普通的稀疏编码,并且得益于高效的K-SVD字典学习算法,计算效率得到了大幅提高。所提方案直接使用原始频谱信号作为训练集,不仅省去了特征提取过程,而且保留了更丰富的信息。经实验验证,该方案较基于时域的移不变稀疏编码具有更高的计算效率、准确率和稳定性。相对于常规诊断算法,除了有...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取