欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于L1范数稀疏距离测度学习的单类分类算法
作者:胡正平;路亮;许成谦 作者单位:燕山大学信息科学与工程学院,河北秦皇岛066004 加工时间:2013-10-15 信息来源:《电子学报》
关键词:模式识别;稀疏距离测度学习;L1范数;单类分类器
摘 要:已有单类分类算法通常采用欧氏测度描述样本间相似关系,然而欧氏测度有时难以较好地反映一些数据集样本的内在分布结构,为此提出一种用于改善单类分类器描述性能的高维空间单类数据距离测度学习算法,与已有距离测度学习算法相比,该算法只需提供目标类数据,通过引入样本先验分布正则化项和L1范数惩罚的距离测度稀疏性约束,能有效解决高维空间小样本情况下的单类数据距离测度学习问题,并通过采用分块协调下降算法高效的解决距离测度学习的优化问题.学习得到的距离测度能容易地嵌入到单类分类器中,仿真实验结果表明采用学习得到的距离测度能有效改善单类分类器的描述性能,特别能够改善覆盖分类的描述能力,从而使得单类分类器具有更强的推广能力.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服