欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

统计学习中的多重优化保证

Multiple Optimality Guarantees in Statistical Learning

作者:John Duchi 作者单位:EECS Department, University of California, Berkeley 加工时间:2015-04-27 信息来源:EECS 索取原文[255 页]
关键词:统计学习;机器学习;凸优化;自适应;梯度
摘 要:In this thesis, we consider the fundamental questions that arise when trading between multiple such criteria--computation, communication, privacy--while maintaining statistical performance. Can we develop lower bounds that show there must be tradeoffs? Can we develop new procedures that are both theoretically optimal and practically useful? To answer these questions, we explore examples from optimization, confidentiality preserving statistical inference, and distributed estimation under communication constraints. Viewing our examples through a general lens of constrained minimax theory, we prove fundamental lower bounds on the statistical performance of any algorithm subject to the constraints--computational, confidentiality, or communication--specified. These lower bounds allow us to guarantee the optimality of the new algorithms we develop addressing the additional criteria we consider, and additionally, we show some of the practical benefits that a focus on multiple optimality criteria brings.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服