关键词:机械臂;未知物体;多层级特征;单次预测;最优抓取位姿
摘 要:针对机械臂对尺寸变换、形状各异、任意位姿的未知物体抓取,提出一种基于多层级特征的单阶段抓取位姿检测算法,将物体抓取位姿检测问题视为抓取角度分类和抓取位置回归进行处理,对抓取角度和抓取位置执行单次预测.首先,利用深度数据替换RGB图像的B通道,生成RGD图像,采用轻量型特征提取器VGG16作为主干网络;其次,针对VGG16特征提取能力较弱的问题,利用Inception模块设计一种特征提取能力更强的网络模型;再次,在不同层级的特征图上,利用先验框的方法进行抓取位置采样,通过浅层特征与深层特征的混合使用提高模型对尺寸多变的物体的适应能力;最后,输出置信度最高的检测结果作为最优抓取位姿.在image-wise数据集和object-wise数据集上,所提出算法的评估结果分别为95.71%和94.01%,检测速度为58.8 FPS,与现有方法相比,在精度和速度上均有明显的提升.
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取