关键词:花生荚果;品种识别;神经网络;支持向量机;主分量分析
摘 要:为实现品种鉴定与真伪识别的自动化,基于图像识别的方法,采用扫描仪采集了20个品种,每个品种100颗花生果正面和2个侧面的图像,分别获取每幅图像的形态、颜色和纹理三大类共50个特征,并对这些特征进行主分量分析(PCA)优化,针对优化和没有优化的特征,搭建了人工神经网络识别模型和支持向量机模型,并采用两种模型进行品种识别,结果表明,采集的特征经PCA优化后表现出更强的识别性能,SVM较神经网络识别效果总体上得到提高,并且识别效果稳定.品种的数量对识别效果有影响,在通常情况下可根据品种的数量来确定特征的数量,可以进一步提高效率,对20个品种,需要选择超过15个特征.颜色类特征比形态类和纹理类特征具有更好的识别效果,经过不同类别的特征组合后,整体上识别性能达到90%以上,基本可以推广到实际生产中使用.