关键词:机械臂抓取;目标检测;坐标匹配;Mask R-CNN
摘 要:为了提高机械臂抓取的精度,提出一种基于Mask R-CNN的机械臂抓取最佳位置检测框架。基于RGB-D图像,所提框架通过精确的实例分割确定抓取对象的类别、位置和掩码信息,由反距离加权法在去噪后的深度图上获取中心点的加权深度坐标,构成目标对象的三维目标位置,经坐标系转换得到最终的最优抓取位置。建议的框架考虑到目标对象的姿态与边缘信息,可以有效地提高抓取性能。最后,基于UR3机械臂上的抓取实验结果验证了该框架的有效性。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取