欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

大数据下基于异步累积更新的高效P-Rank计算方法
作者:王旭丛;李翠平;陈红 作者单位:中国人民大学信息学院计算机系;中国人民大学信息学院数据仓库与商务智能实验室 加工时间:2014-12-07 信息来源:软件学报 索取原文[13 页]
关键词:异步累积更新;大数据;相似度;P-Rank;大规模计算
摘 要:P-Rank是SimRank的扩展形式,也是一种相似度度量方法,被用来计算网络中任意两个结点的相似性.不同于SimRank只考虑结点的入度信息,P-Rank还加入了结点的出度信息,从而更加客观准确地评价结点间的相似程度.随着大数据时代的到来,P-Rank需要处理的数据日益增大.使用MapReduce等分布式模型实现大规模P-Rank迭代计算的方法,本质上是一种同步迭代方法,不可避免地具有同步迭代方法的缺点:迭代时间(尤其是迭代过程中处理器等待的时间)长,计算速度慢,因此效率低下.为了解决这一问题,采用了一种迭代计算方法——异步累积更新算法.这个算法实现了异步计算,减少了计算过程处理器结点的等待时间,提高了计算速度,节省了时间开销.从异步的角度实现了P-Rank算法,将异步累积更新算法应用在了P-Rank上,并进行了对比实验.实验结果表明该算法有效地提高了计算收敛速度.
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服