基于多向核熵成分分析的微生物发酵间歇过程监测研究
关键词:MKECA;过程监测;间歇过程;MKPCA
摘 要:针对微生物发酵间歇过程监测算法只考虑数据信息最大化未考虑数据簇结构信息的不足,提出了基于多向核熵成分分析(Multi-way Kernel Entropy Component Analysis,MKECA)间歇过程监测的新方法。该方法首先引入AT展开策略对三维历史数据进行预处理,然后通过核映射将数据从低维空间映射到高维特征空间,解决数据的非线性特性,并在高维特征空间依据核熵的大小对数据进行降维,使降维后的数据能够最大化地保留原始数据的分布;同时理论证明了所提方法在特定条件下等同于传统方法,也就是说MKECA既能兼顾传统方法的优势,又能弥补传统方法的不足;最后通过青霉素仿真数据进行验证,表明MK...
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取