关键词:稀疏性;主元分析;lasso;凸优化
摘 要:主元分析是一种广泛应用的多元统计技术.在处理高维数据时,其结果的统计一致性与物理可解释性难以保证.引入以变量选择为目标的稀疏性约束,可有效缓解上述困难.基于最近10年的研究进展,本文阐述了稀疏性的基本概念和罚函数的设计标准,介绍了经典的稀疏性约束lasso及其多个变种:融合lasso、成组lasso、自适应lasso、弹性网等等.Lasso及其变种均可用作主元分析的约束,构建稀疏主元分析框架,但关键在于如何将稀疏主元转化为凸优化问题并快速求解.本文比较了稀疏主元的多种转化形式:奇异值分解、稀疏回归、低阶秩逼近、罚矩阵分解和半正定松弛.分析了基于最小角回归算法的一般lasso及广义lasso问题的求解方法.此外还初步探讨了函数型数据的稀疏主元分析问题.