关键词:电子鼻;神经网络;预测;棉花;棉铃虫;模式识别
摘 要:棉花害虫具有隐蔽性、迁飞性和突发性特点,并且影响因素众多,棉花虫害准确地诊断是农业领域的难点问题。该研究以受到棉铃虫侵害的花铃期棉花为研究对象,采用电子鼻对不同处理的棉花挥发物进行检测。研究表明,主成分分析(Principal Component Analysis, PCA)和聚类分析结果显示健康棉花释放的挥发物具有明显的昼夜节律性,健康棉花与虫害棉花差异性显著。径向基函数神经网络(Radial Basis Function Neural Network, RBFNN)对8个不同时间的4组虫害棉花处理进行分析,测试集判别总的正确率为73.4%,健康棉花对照组测试集判别正确率100%,误判样本出现在3个虫害处理之间。当不考虑时间因素建立虫害棉花统一的预测模型,RBFNN模型对健康棉花对照组的预测正确率均达到了100%,分析结果可以作为花铃期棉花是否遭受棉铃虫侵害的依据,说明电子鼻可以作为棉花虫害发生的有效监测手段,在农作物虫害监测领域具有潜在的应用价值。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取