关键词:机器学习;电动汽车;电池系统;风险预警;样本卷积和交互网络(SCINet);随机森林(RF)
摘 要:为提高动力电池在实车工况下安全预警的及时性和准确性,将电池系统安全预警问题提炼为关键状态预测及基于预测状态的预警分类2大科学问题,根据实车运行中的电池状态数据,选择电池的单体电压最高值、单体电压极差等作为关键预测对象;利用费舍尔计分和最大信息系数(MIC)进行特征选择,采用样本卷积和交互网络模型(SCINet)实现关键状态预测;基于预测的状态,建立多分类随机森林(RF)模型,对动力电池的安全风险进行分级预警。研究结果表明:该模型对电池多个参数具有很强的预测能力,如预测1 min后单体电压最高值的均方根误差(RMSE)为0.027 1,温度最高值为0.054 0;对电池系统1 min后安全风险等级预测的查准率为84%,宏平均f1分数为74%。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取