欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于改进LSTM神经网络的化工过程故障诊断
作者:杜先君; 邱小彧 加工时间:2024-04-27 信息来源:兰州理工大学学报
关键词:化工过程;深度学习;注意力机制;故障诊断
摘 要:针对现代化工过程中数据非线性、高维度以及动态时序等特点,传统的故障诊断模型对化工过程的故障诊断精度较低.基于此,设计了一种基于改进的长短时记忆神经网络(LSTM)故障诊断方法.首先,将采集的故障数据输入卷积神经网络(CNN),对数据进行特征提取和降维;其次,将处理过的数据输入改进的LSTM网络,进行深层特征提取;最后,把提取的深层特征信息输入到注意力机制进行特征“聚焦”,实现特征融合后输入softmax分类器实现故障分类.由田纳西-伊斯曼(TE)过程诊断实验结果表明,基于改进的LSTM网络的故障诊断方法在故障分类精度、训练速度方面都更优于递归神经网络(RNN)、门控循环神经网络(GRU)、卷积神经网络(CNN)和深度自编码网络(DAEN),在实际化工过程的应用有一定的优势.
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服