欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

面向非静态数据分类的演进支持向量机
作者:史荧中;王士同;张景祥;倪彤光; 作者单位:江南大学数字媒体学院;无锡职业技术学院物联网技术学院;常州大学信息科学与工程学院; 加工时间:2013-12-20 信息来源:电子与信息学报
关键词:支持向量机;;分类器序列;;非静态数据;;演进;;衰变函数
摘 要:时间自适应支持向量机(TA-SVM)方法在处理非静态数据集时表现出良好的性能,但仅根据邻接子分类器相似而获得的相关信息并不充分,由此可能会导致训练所得模型不可靠,限制其应用能力。该文通过定义子分类器序列的相关性衰减函数,提出新的面向非静态数据分类问题的演进支持向量机(Evolving Support VectorMachines,ESVM)。ESVM使用衰变函数以体现子分类器之间的相关程度,通过约束所有子分类器之间的带权差异以求得变化更光滑的子分类器序列,契合了数据中隐藏的渐变概念。在各种数据缓慢变化场景的对比实验中,该文的ESVM方法优于TA-SVM方法。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服