欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于改进K均值聚类的机械故障智能检测
作者:费贤举; 加工时间:2016-08-05 信息来源:计算机测量与控制
关键词:K均值聚类算法;特征提取;机械故障检测
摘 要:针对传统的K均值聚类算法在机械故障检测的过程中,由于对K值的选择具有较强的主观性,最后极易得到局部最优解,而非全局最优解,降低了机械故障检测的准确性。提出一种改进K均值聚类的机械故障智能检测方法;将K均值聚类算法与粒子群算法相结合,在迭代处理的过程中,结合K均值进行优化,即将粒子群算法中的子代个体利用K均值聚类进行运算获取局部最优解,并使用这些个体继续参与迭代处理,这样能够提高算法的收敛速度,避免陷入局部最优解,获得准确的机械故障信号特征;实验结果表明,利用K均值倾斜特征提取的机械故障智能检测算法进行机械故障检测,能够有效提高故障检测的准确性,取得了令人满意的效果。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服