关键词:空气污染潜势指数;空气污染指数;统计模型;大气扩散清除因子
摘 要:建立了一个空气污染潜势预报和统计预报相结合的模型,该模型以特征气象因子和大气扩散清除因子为基础,并考虑不同因子的权重,定义空气污染潜势指数APPI.所考虑的因子包括:地面风速、混合层高度、混合层内平均风速、风向日变化、稳定度级数、垂直扩散系数、SO2干沉降速率、NO2于沉降速率、PM10干沉降速率、降水时长、地面天气形势.进一步利用统计方法建立空气污染指数API与APPI之间的关系.利用南京地区2009~2010年气象资料计算APPI,通过3项式拟合得到API与APPI的统计方程.结果表明,拟合得到的API与实际API相关系数为0.67,具有显著的相关性,且等级准确率为76.7%.进一步利用201 1年1~12月中尺度气象模式WRF预报的气象场开展实况预报.研究表明,24h预报、48h预报、回顾预报的逐月等级正确率分别为44.4%~87.5%,46.4%~1 00%和63.0%~80.0%,年均等级正确率为60.6%,62.4%.和73.1%.若定义预报API与实际API相差±20以内为正确,则24h预报、48h预报、回顾预报的正确率分别为58.1%,59.4%和63.8%.在IBM x3500并行集群服务器上计算,48h预报需要机时3h.可见,该模型具有较好的预报性能,相对数值模型计算效率很高.