欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

大型集群中快速通用数据处理架构设计

An Architecture for Fast and General Data Processing on Large Clusters

作者:Matei Zaharia 作者单位:EECS Department, University of California, Berkeley 加工时间:2015-06-06 信息来源:EECS 索取原文[127 页]
关键词:集群技术;数据处理;集群计算系统
摘 要:This dissertation proposes an architecture for cluster computing systems that can tackle emerging data processing workloads while coping with larger and larger scales. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping the scalability and fault tolerance of previous systems. And whereas most deployed systems only support simple one-pass computations (e.g. aggregation or SQL queries), ours also extends to the multi-pass algorithms required for more complex analytics (e.g. iterative algorithms for machine learning). Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing, or SQL and complex analytics.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服