欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于VMD-SVD和SVM的旋转机械故障诊断研究
作者:张燕霞;户文刚; 加工时间:2022-08-16 信息来源:机电工程
关键词:变分模态分解;奇异值分解;支持向量机;故障诊断
摘 要:旋转机械的振动信号具有非线性、非平稳特点,同时其早期的微弱故障信号易受噪声的干扰,因此在故障诊断中难以提取其故障特征,识别其故障类型,针对这一问题,提出了一种基于变分模态分解(VMD)-奇异值分解(SVD)和支持向量机(SVM)的旋转机械故障诊断方法。首先,对原始振动信号进行了VMD分解,并得到了其若干个分量信号;然后,对各分量信号进行了信号重构,应用SVD提取了其重构信号的奇异值特征向量;最后,将其特征向量输入SVM进行了故障诊断,利用双跨度转子故障模拟实验台实测数据验证了该方法的有效性。研究结果表明:基于VMD-SVD方法得到的模态分量(IMF)矩阵的奇异值表现出很好的稳定性,在三维特征散点图中表现出很好的可分性;在变工况和不同转速下,与其他组合方法相比,该方法具有更高的识别准确率,平均分类识别率分别到达了95.96%、95.95%,可以有效地辨识出轴承等旋转机械的故障类型。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服