基于EDMD与改进KPCA算法的机械设备故障诊断方法
作者:金樟民;方学宠;娄益凡;张富齐;
加工时间:2022-08-17
信息来源:起重运输机械
关键词:扩展的动模式分解;改进的核主成分分析;齿轮;故障诊断;方法
摘 要:机械设备故障诊断本质上是一种故障模式识别的问题,选择合适的诊断方法对诊断结果的准确性至关重要。文中提出了一种将扩展的动模式分解(EDMD)和改进的核主成分分析(improvedKPCA)相结合的机械设备故障诊断的算法。首先通过EDMD将振动信号分解为固有模态函数分量(IMFs),并获得包含特征信息的IMFs,然后对这些有效分量计算如平均值、极值等多个特征参数,从而形成高维数据结构,最后再利用改进的KPCA将这些高维数据映射到低维空间,从而实现对不同故障类型的准确聚类。将文中所述方法应用于仿真信号及所采集的故障模拟综合试验台齿轮故障数据分析。结果表明该方法具有可行性,在机械设备复杂信号处理领域具有良好的应用前景。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取