基于神经网络和模糊补偿的水下机械臂控制
作者:高阳;张晓晖;高玉儿;尚婷;杨启航;
加工时间:2022-08-17
信息来源:计算机工程与应用
关键词:水下机械臂;;RBF神经网络;;模糊补偿;;动力学模型
摘 要:针对水下机械臂动力学模型建模复杂且滑模控制的抖振问题,利用Lagrange法和Morison方程精准建立二连杆串联水下机械臂的动力学模型,对模型中参数的不确定项使用4个RBF神经网络分别进行逼近,并且对摩擦项使用模糊控制进行补偿的方法,精准迅速地实现了对水下机械臂控制系统跟踪控制。通过进行仿真分析,基于神经网络和模糊补偿控制的方法与滑模控制、整体RBF神经网络控制和分块RBF神经网络控制相比,控制系统的平均误差分别降低了85.5%、71.8%、93.1%。结果表明,此方法有效降低了控制系统的跟踪误差,并同时提高了稳态性和抗干扰性。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取