欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于稳定Hammerstein模型的在线软测量建模方法及应用
作者:丛秋梅;苑明哲;王宏; 加工时间:2015-01-15 信息来源:化工学报
关键词:Hammerstein模型;在线建模;软测量;预测;稳定学习;污水处理过程;稳定性
摘 要:针对复杂工业过程中由于存在未建模动态和不确定干扰,导致关键变量的软测量精度下降的问题,提出了一种基于稳定Hammerstein模型(H模型)的在线软测量建模方法。H模型的非线性增益采用带有时变稳定学习算法的小波神经网络模型,线性系统部分采用基于递推最小二乘的ARX模型,基于输入到状态稳定性理论证明了H模型辨识误差的有界性。其中小波神经网络具有表征强非线性的特性,稳定学习算法可抑制未建模动态和不确定干扰的影响,改善了模型的预测精度和自适应能力。以典型非线性系统和实际污水处理过程为例进行了仿真研究,结果表明,基于稳定H模型的软测量方法具有较高的在线软测量精度。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服