欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

月球尘埃模拟的机械组件测试——范式和实用性

Lunar Dust Simulant in Mechanical Component Testing-Paradigm and Practicality

作者:Jett, T.Street, K.Abel, P.Richmond, R. 作者单位:Glenn Research Center;Marshall Space Flight Center 加工时间:2013-12-22 信息来源:科技报告(NASA) 索取原文[37 页]
关键词:机械基础件;机械组件;月球表面
摘 要:Due to the uniquely harsh lunar surface environment, terrestrial test activities may not adequately represent abrasive wear by lunar dust likely to be experienced in mechanical systems used in lunar exploration. Testing to identify potential moving mechanism problems has recently begun within the NASA Engineering and Safety Center Mechanical Systems Lunar Dust Assessment activity in coordination with the Exploration Technology and Development Program Dust Management Project, and these complimentary efforts will be described. Specific concerns about differences between simulant and lunar dust, and procedures for mechanical component testing with lunar simulant will be considered. In preparing for long term operations within a dusty lunar environment, the three fundamental approaches to keeping mechanical equipment functioning are dust avoidance, dust removal, and dust tolerance, with some combination of the three likely to be found in most engineering designs. Methods to exclude dust from contact with mechanical components would constitute mitigation by dust avoidance, so testing seals for dust exclusion efficacy as a function of particle size provides useful information for mechanism design. Dust of particle size less than a micron is not well documented for impact on lunar mechanical components. Therefore, creating a standardized lunar dust simulant in the particulate size range of ca. 0.1 to 1.0 micrometer is useful for testing effects on mechanical components such as bearings, gears, seals, bushings, and other moving mechanical assemblies. Approaching actual wear testing of mechanical components, it is beneficial to first establish relative wear rates caused by dust on commonly used mechanical component materials. The wear mode due to dust within mechanical components, such as abrasion caused by dust in grease(s), needs to be considered, as well as the effects of vacuum, lunar thermal cycle, and electrostatics on wear rate.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服