关键词:过程神经网络;;量子计算;;混合蛙跳算法;;学习算法
摘 要:针对基于正交基展开的过程神经元网络参数较多,基函数展开项数和网络结构难以确定,传统BP算法不易收敛的问题,结合量子理论提出一种量子混合蛙跳算法,用于过程神经元网络的训练。该算法利用量子位的Bloch球面坐标将网络结构、网络参数和展开项数统一编码,提出沿球面上经过两点间的劣弧路径进行旋转的方法来同时更新三个优化解,并利用Hadamard门完成个体变异避免早熟,进而有效扩展解空间的搜索范围。以抽油机故障诊断和网络流量预测为例,验证了算法的有效性。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取