欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

专业社交媒体中的主题图谱构建方法研究——以汽车论坛为例
作者:林杰;苗润生; 加工时间:2020-02-18 信息来源:情报学报
关键词:专业社交媒体;主题图谱;Skip-Gram模型;LDA主题模型;图模型
摘 要:专业社交媒体中主题图谱的内容包括论坛中的主题及主题之间的关系,其具有挖掘专业产品创新方向、构建专业知识索引等重要应用价值。本文基于深度学习技术与文本挖掘技术,提出了专业社交媒体中的主题图谱构建方法。首先,使用专业社交媒体中的文本训练Skip-Gram模型,利用该模型的隐藏层权重与模型输出的预测结果,分别获取词语间的语义相似度与上下文关联度。其次,基于该语义相似度与上下文关联度,对已有领域种子本体词汇进行扩充,将语义相似或上下文相邻近的词汇纳入本体词汇,为主题抽取提供高质量的领域词汇。然后,基于扩充的专业本体词汇,使用结合本体词汇的LDA主题模型从专业社交媒体文本中抽取主题与主题词。最后,利用语义相似度与上下文关联度,定义关联度权重,通过图模型与谱聚类,获取主题间与主题词的关联关系与层次结构。本文使用汽车论坛语料进行主题图谱生成实验。实验结果表明,本文方法获取的主题词纯净度相比单独使用LDA模型提升了20.2%,且能够清晰合理地展现主题之间的关系。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服