欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

一种基于局部结构的改进奇异值分解推荐算法
作者:方耀宁;郭云飞;丁雪涛;兰巨龙; 作者单位:国家数字交换系统工程技术研究中心;清华大学软件学院; 加工时间:2013-12-20 信息来源:电子与信息学报
关键词:信息处理;;推荐系统;;协同过滤;;奇异值分解(SVD);;局部结构
摘 要:基于奇异值分解(Singular Value Decomposition,SVD)的推荐算法,在预测准确性、稳定性上具有明显优势,但在用随机梯度下降法求解过程中误差下降速度逐渐变慢、迭代次数较多,这极大限制了其在实际项目中的应用。针对这个问题,该文利用评分矩阵的差分矩阵来表征局部结构信息,并作为新的目标函数来优化SVD推荐算法。在MovieLens和Netflix数据集合上的实验结果表明:与经典SVD算法相比,该优化算法能够用更少的迭代次数得到更准确的预测结果;与当前的其他算法相比,该优化算法在预测准确性上仅次于SVD++,在训练时间上具有显著优势。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服