关键词:支持向量机;;主动学习;;有价值样本;;支持向量
摘 要:针对支持向量机(SVM)模型不能有效处理海量数据挖掘的问题,提出一种改进的基于主动学习的支持向量机(AL_SVM)方法。该方法首先将训练集随机划分为多个独立同分布的子集,并选择其中一个子集作为初始训练集来训练SVM得到初始分类器和支持向量集,然后根据已经得到的分类器信息在剩余样本集中选择对于分类器改进作用最大的有价值样本。并与已得到的支持向量集合并构成新训练集,以更新分类器,从而在保留重要支持向量信息的前提下,去除大量不重要的支持向量,一定程度上避免了过学习问题,提高了学习效率。实验表明,AL_SVM方法能够在保持学习器泛化能力的同时提高其学习效率。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取