关键词:去趋势波动分析;;整体平均经验模态分解;;Hurst指数
摘 要:去趋势波动分析(DFA)是一种研究时间序列长相关幂律特性的简单而有效的方法,其中关键的去趋势步骤就是获取序列在不同时间尺度上的局部波动函数。提出采用整体平均经验模态分解(EEMD)确定局部趋势项,去趋势操作通过移除基于EEMD的局部趋势项完成,从而给出了一种基于EEMD的DFA方法,并将其用于时间序列的Hurst指数估计。采用分形高斯噪声(FGN)和真实网络流量数据的仿真结果表明,该方法具有较好的估计效果,相比于基于EMD的DFA估计法,具有更高的估计精度。
内 容:原文可通过湖北省科技信息共享服务平台(http://www.hbstl.org.cn)获取