欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

基于BN-1DCNN的旋转机械故障诊断研究
作者:冯浩楠;付胜;胥永刚; 加工时间:2022-03-18 信息来源:振动与冲击
关键词:深度学习;;卷积神经网络(CNN);;旋转机械;;故障诊断
摘 要:为了对旋转机械的故障特征进行自适应提取,实现智能故障诊断,提出了一种基于批量归一化的一维卷积神经网络(convolutional neural networks, CNN)模型。由于卷积神经网络通常应用于二维图像或三维视频领域,故通过将卷积核改进为一维卷积核来实现对采集的一维振动数据的直接卷积,并且采用了批归一化层来防止过拟合,采用HZXT-008小型转子实验台采集的数据对该方法进行验证。试验结果表明该方法平均诊断准确率高达98.43%,并且与其他模型相比稳定性更高。该方法实现了大量样本下旋转机械不同故障类型的故障特征自适应提取与故障类型的准确识别。
内 容:原文可通过湖北省科技信息共享服务平台(http://hbstl.hbstd.gov.cn/webs/homepage.jsp)获取
© 2016 武汉世讯达文化传播有限责任公司 版权所有
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服