欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

生物聚电解质:溶液,凝胶,分子间配合物和纳米粒子

Biological Polyelectrolytes: Solutions, Gels, Intermolecular Complexes and Nanoparticles

作者:H.B. Bohidar;Kamla Rawat 加工时间:2015-08-05 信息来源:科技报告(Other) 索取原文[70 页]
关键词:蛋白质;碳水化合物;生物分子;生物医学
摘 要:In this chapter, a detailed discussion on the salient features of structures of biomolecules like proteins, carbohydrates and nucleic acids is presented. Intermolecular interactions leading to phase separation, coacervation and nano-particle formation is discussed herein. Biomolecular solutions exist as gels, coacervates, dispersions and melts with each of these phases having its signature physico-chemical properties, which is discussed in this chapter. The discussions are supported by robust experimental data obtained from an array of methods like turbidimetry, elecrophoresis, viscosity, light scattering etc. The inevitability of the phenomenon of self-organization in biopolymers results in the generation of a variety of soft matter phases which do not, however, make it predictable. For instance, the associative aggregation is a process which remains obscure, as every protein aggregates in a different manner under different conditions. One known feature to the aggregation of proteins is the strong dependence upon pH, salt concentration and temperature. Beyond the influence of these factors and their effects on aggregation, the process is not well understood. An increase in protein usage in biomedical and pharmaceutical studies implicates protein aggregation in Alzheimer's, Parkinson's and other diseases, and have placed a growing importance upon understanding this behaviour in general. Comparison of the system to other protein-polyelectrolyte systems suggests that the preferential binding of the two could be a result of complexation of the two molecules which often lead to coacervation. Such association can even occur at pH greater than the isoelectric points (pI), when the net charge of protein is of the same sign as that of polyelectrolyte. Such binding though prevalent in nature is not well understood. In summary, a comprehensive account of biomolecular phase states and their inherent attributes are presented in this review.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服