关键词:改进YOLO算法;动物源性食品;主干特征提取网络;最佳权重参数;特征加权融合
摘 要:由于动物源性食品图像的特征分布不规则,导致对其检测结果的可靠性难以得到保障,为此提出了一种基于改进YOLO算法的动物源性食品检测方法。通过YOLO V3的主干特征提取网络Darknet-53,分别对动物源性食品图像中存在的可见光和红外光进行特征提取,结合二者对应模态特征的最佳权重参数,进行特征加权融合,计算融合后特征的目标框位置损失、目标置信度损失以及类别损失,确定最终的分类。测试结果表明,设计方法对动物源性食品图像的识别结果稳定,且错误识别数量始终保持在较低水平,不受测试数据集构成的影响。
内 容:原文可通过湖北省科技资源共享服务平台(https://www.hbsts.org.cn/)获取