欢迎访问行业研究报告数据库

行业分类

当前位置:首页 > 报告详细信息

找到报告 1 篇 当前为第 1 页 共 1

可扩展机器学习的随机算法

Randomized Algorithms for Scalable Machine Learning

作者:Ariel Jacob Kleiner 作者单位:University of California, Berkeley 加工时间:2013-12-18 信息来源:EECS 索取原文[77 页]
关键词:随机算法;机器学习;质量评估
摘 要:Many existing procedures in machine learning and statistics are computationally intractable in the setting of large-scale data. As a result, the advent of rapidly increasing dataset sizes, which should be a boon yielding improved statistical performance, instead severely blunts the usefulness of a variety of existing inferential methods. In this work, we use randomness to ameliorate this lack of scalability by reducing complex, computationally dicult inferential problems to larger sets of signi cantly smaller and more tractable subproblems.This approach allows us to devise algorithms which are both more ecient and more amenable to use of parallel and distributed computation. We propose novel randomized algorithms for two broad classes of problems that arise in machine learning and statistics;estimator quality assessment and semide nite programming.
© 2016 武汉世讯达文化传播有限责任公司 版权所有 技术支持:武汉中网维优
客服中心

QQ咨询


点击这里给我发消息 客服员


电话咨询


027-87841330


微信公众号




展开客服